Autophagy: A Double-Edged Sword in Cancer Development, Immune Evasion, and Drug Resistance

Author Name : Naveen Yadav

Oncology

Page Navigation

Abstract

Autophagy, a highly conserved cellular process involving the degradation and recycling of cellular components, plays a complex and multifaceted role in cancer. While initially recognized as a tumor-suppressor mechanism, emerging evidence suggests that autophagy can also contribute to tumorigenesis, promote immune evasion, and drive resistance to various cancer therapies. This review delves into the intricate interplay between autophagy and cancer, exploring its role in tumor initiation, progression, and response to treatment. We discuss the molecular mechanisms underlying autophagy in cancer, its impact on tumor metabolism, immune surveillance, and therapeutic responses. Understanding the multifaceted roles of autophagy in cancer is crucial for developing novel therapeutic strategies that can effectively target this pathway and improve cancer treatment outcomes.

Introduction

Autophagy, derived from the Greek words "auto" (self) and "phagy" (to eat), is an essential cellular process involved in the degradation and recycling of cellular components. It serves as a critical housekeeping mechanism, maintaining cellular homeostasis by removing damaged organelles, protein aggregates, and intracellular pathogens. This highly regulated process is essential for cellular survival and adaptation to various stresses, including nutrient deprivation, hypoxia, and oxidative stress.

Autophagy and Tumorigenesis

  • Tumor Suppressor Role:

    • Autophagy acts as a tumor suppressor by eliminating damaged organelles, such as mitochondria, which can produce reactive oxygen species (ROS) and contribute to genomic instability.

    • It plays a critical role in removing misfolded proteins and protein aggregates, preventing their accumulation and potential toxicity to the cell.

    • Autophagy contributes to the removal of damaged DNA, promoting genomic stability and suppressing tumor initiation.

  • Tumor-Promoting Role:

    • Under conditions of nutrient deprivation or hypoxia, which are common in the tumor microenvironment, autophagy can provide essential nutrients for tumor cell survival by recycling cellular components for energy production.

    • Autophagy can also promote tumor cell survival by degrading pro-apoptotic proteins and activating survival pathways.

    • In some cases, autophagy may contribute to tumor cell invasion and metastasis by promoting cell motility and degradation of the extracellular matrix.

Autophagy and Immune Evasion

  • Autophagy and Antigen Presentation: Autophagy plays a crucial role in antigen presentation, facilitating the presentation of tumor-derived antigens to the immune system. Autophagy delivers intracellular proteins, including tumor antigens, to the MHC class II pathway, enabling recognition by CD4+ T cells.

  • Autophagy and Immune Suppression: In certain contexts, autophagy can contribute to immune evasion. For example, autophagy can degrade immune-stimulatory molecules, such as cytokines and chemokines, and promote the expression of immunosuppressive factors.

Autophagy and Drug Resistance

  • Chemotherapy Resistance: Autophagy can contribute to resistance to chemotherapy by degrading chemotherapeutic agents, promoting DNA repair, and providing nutrients for cell survival under conditions of metabolic stress induced by chemotherapy.

  • Radiotherapy Resistance: Autophagy can protect cancer cells from the damaging effects of radiation by removing damaged organelles and promoting DNA repair.

  • Targeted Therapy Resistance: Autophagy can contribute to resistance to targeted therapies, such as tyrosine kinase inhibitors, by promoting the degradation of targeted proteins or activating compensatory survival pathways.

Targeting Autophagy in Cancer Therapy

  • Autophagy Inhibitors: Targeting autophagy with pharmacological inhibitors, such as chloroquine and hydroxychloroquine, may sensitize cancer cells to chemotherapy, radiation therapy, and targeted therapies.

  • Autophagy Inducers: In certain contexts, inducing autophagy may be beneficial, such as in cancers with high metabolic demands or in combination with chemotherapeutic agents that induce metabolic stress.

  • Personalized Approaches: The therapeutic targeting of autophagy should be personalized based on the specific characteristics of the tumor and the patient.

Conclusion

Autophagy plays a complex and multifaceted role in cancer development and progression. Understanding the intricate interplay between autophagy and cancer is crucial for developing novel therapeutic strategies. Targeting autophagy, either through inhibition or induction, may offer promising avenues for improving cancer treatment outcomes. Further research is needed to elucidate the precise mechanisms by which autophagy contributes to cancer and to develop effective therapeutic strategies that modulate autophagy in cancer patients.


Read more such content on @ Hidoc Dr | Medical Learning App for Doctors

© Copyright 2025 Hidoc Dr. Inc.

Terms & Conditions - LLP | Inc. | Privacy Policy - LLP | Inc. | Account Deactivation
bot